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SATISFACTION OF ASYMPTOTIC BOUNDARY CONDITIONS I N  THE 

NUMERICAL SOLUTION OF BOUNDARY-LAYER EQUATIONS 

by Phi l ip  R. Nachtsheim* and Paul Swigert** 

Lewis Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio 

ABSTRACT 

A method f o r  the  numerical solution of d i f f e r e n t i a l  equations of the 

w boundary-layer type i s  presented. The aspnptotic boundary conditions a re  

a 
Lo 

, - a  cu 
I 

s a t i s f i e d  a t  the edge of the boundary layer by adjust ing the  i n i t i a l  con- 

d i t i ons  so tha t  the  mean square e r ro r  between the  camputed var iables  and 

the  asymptotic values i s  minimized. A l e a s t  squares convergence c r i t e r i o n  

i s  used t o  propose a method of solution i n  which the edge of the  boundary 

layer  is  approached i n  s teps .  The convergence r a t e  t o  a so lu t ion  i s  

rap id  and appears t o  be insensi t ive t o  the  i n i t i a l  guesses of the i n i t i a l  

conditions. Use of a least-squares convergence c r i t e r i o n  leads t o  the  

unique solut ion even i n  the case of retarded main stream flows. A descr ipt ion 

of the  m 

worked. 

h0d-J-s given, and two examples taken fram boundary-layer theory a re  

b INTRODUCTION 

The numerical in tegra t ion  of the  ordinary d i f f e r e n t i a l  equations of 

boun&ry-layer 'theory involves the ' satisfacti .on of asymptotic 

boundary conditions; t h a t  is ,  some boundary conditions a r e  specif ied at  the  

i n i t i a l  point or  w a l l ,  and others  a re  specif ied as l i m i t s  t h a t  must be ap- 

proached at la rge  values of the independent var iable  corresponding t o  the  

* Aerospace Research Engineer. 
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edge of the boundary layer.  

numerically from the  wall t o  the  edge of t he  boundary layer ,  it i s  necessary 

t o  specify as  many a d d i t i o n a l  conditions a t  the  w a l l  as there  a r e  conditions 

t o  be sa t i s f i ed  a t  the  edge of the  boundary layer.  These addi t iona l  i n i t i a l  

conditions have t o  be varied i n  order t o  s a t i s f y  the conditions a t  the  edge 

of the  boundary layer .  

i n i t i a l  conditions r e l y  on the  f a c t  t h a t ,  f o r  large values of the  independent 

var iable ,  the in tegra ls  of the d i f f e r e n t i a l  equations depend on the  i n i t i a l  

conditions. One method t h a t  has been used t o  f ind  the  proper i n i t i a l  con- 

d i t ions ,  called the  in i t i a l -va lue  method ( r e f .  l), i s  t h a t  of obtaining 

in tegra ls  of t he  d i f f e r e n t i a l  equations with guessed i n i t i a l  conditions; 

t h a t  i s ,  an attempt i s  made t o  integrate  the  d i f f e r e n t i a l  equations t o  the  

edge of t he  boundary layer .  If t h i s  can be accomplished, corrections a re  

made f o r  the i n i t i a l  guesses by the  Newton-Raphson method, and the  process 

i s  repeated u n t i l  convergence i s  achieved. 

I n  order t o  car ry  out t h i s  i t e r a t i o n ,  addi t iona l  d i f f e r e n t i a l  equations 

I n  order t o  integrate  the  d i f f e r e n t i a l  equations 

A l l  methods t h a t  have been used t o  f i nd  the  proper 

have t o  be integrated. There w i l l  be as many addi t iona l  d i f f e r e n t i a l  equa- 

t i ons  as there a r e  i n i t i a l  conditions t o  be varied.  The in t eg ra l s  of these 

addi t ional  equations ca l led  per turbat ion equations give the  r a t e  of change 

of t he  integrals  of the  o r ig ina l  d i f f e r e n t i a l  equation with respect  t o  t h e  

i n i t i a l  conditions. 

Another method t h a t  has been used, ca l led  quas i l inear iza t ion  ( r e f .  21,  

i s  similar i n  pr inciple  t o  the in i t i a l -va lue  method, except that the  d i f -  

f e r e n t i a l  equations a re  l inear ized.  

t i o n s  f o r  the current approximation a r e  ir&,mogeneous, s ince they  a l s o  contain 

the  previous approximation as members. 

The r e s u l t i n g  l i n e a r  d i f f e r e n t i a l  equa- 
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The per turbat ion equations of the in i t ia l -va lue  method correspond t o  a 

complementary funct ion of the l i nea r  d i f f e r e n t i a l  equations of the  quasi- 

l i nea r i za t ion  method. 

i n  the quasi l inear izat ion method, the complementary functions a r e  used t o  

obtain solut ions t o  the  inhomogeneous l inear  d i f f e r e n t i a l  equations, whereas 

i n  the  in i t i a l -va lue  method, the solutions t o  the  perturbation equations are 

used t o  ad jus t  the  s t a r t i n g  values a t  the i n i t i a l  point.  A disadvantage 

associated with the  quasi l inear izat ion method i s  that functions representing 

the  previous approximation have t o  be stored i n  order t o  construct the  current 

approximation. Furthermore, the solution of the  inhamogeneous equation ob- 

ta ined by combining camplementary solutions and a pa r t i cu la r  i n t eg ra l  i s  

usual ly  not well determined except near t he  o r ig in  or  i n i t i a l  po in t ,  as pointed 

out by Hartree ( r e f .  3 ) .  The solutions of the per turbat ion equations, however, 

can be used t o  determine the proper i n i t i a l  conditions closely.  This i s  the  

procedure that i s  followed i n  the  in i t i a l -va lue  method. 

I n  application, the two methods a r e  d i f f e ren t  i n  tha t ,  

Both methods have been used t o  obtain solut ions of the boundary-layer 

equations. Neither of these methods, however, has solved the problem of when 

t o  s top  the  integrat ion.  Sincemeboundary condition i s  specif ied as a l i m i t  

t h a t  must be approached at  large values of t he  independent var iable ,  t he  i n t e -  

gra t ion  should be stopped a t  a value of the  independent var iable  tha t  i s  suffi- 

c i e n t l y  large so tha t  the  various functions a re  approaching t h e i r  asymptotic 

values. This value of the  independent var iable  could properly be ca l led  the  

edge of the  boundary layer.  

t h i s  value of the  independent variable must be guessed at beforehand. 

guessed value i s  too  small, t he  integrals  of the d i f f e r e n t i a l  equation may not 

I n  the various methods used t o  solve t h i s  problem, 

If the 
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be able  t o  s a t i s f y  the  imposed conditions; or, there  may be more than one 

value of an i n i t i a l  condition t h a t  leads t o  in t eg ra l s  of t he  d i f f e r e n t i a l  

equations t h a t  s a t i s f y  the  imposed boundary conditions. 

If the guessed value i s  too  large,  it i s  possible t ha t  t he  in t eg ra l s  

of the  equations w i l l  diverge; or, t h a t  convergence t o  a so lu t ion  i s  ex- 

tremely slow. 

Another problem t h a t  sometimes besets  t h e  numerical in tegra t ion  of t he  

boundary-layer equations i s  the  apparent i n s e n s i t i v i t y  of t he  in t eg ra l s  of 

t he  boundary-layer equations t o  the  i n i t i a l  conditions. 

appears i n  the in tegra t ion  of the  Falkner-Skan d i f f e r e n t i a l  equation (ref. 4) .  

All the  in tegra ls  of the Falkner-Skan equation f o r  the  case of norretard& 

flows i n  the main stream tend t o  diverge except t h e  ones with the proper 

i n i t i a l  conditions; however, f o r  t he  case of re tarded flows, a so lu t ion  with 

any value of t he  i n i t i a l  condition near t h e  cor rec t  one w i l l  eventual ly  meet 

t h e  proper boundary condition a t  in f in i ty .  The unique so lu t ion  w a s  found by 

Hartree ( r e f .  4) f o r  re tarded flows by imposing t h e  addi t iona l  condition t h a t  

t he  desired solut ion i s  the one t h a t  approaches the  boundary condition most 

rap id ly  from below. 

learned from several  t r i a l  runs. 

This d i f f i c u l t y  

. However, t h i s  behavior of t he  so lu t ions  can only be 

I n  an e f fo r t  t o  adapt t he  in i t i a l -va lue  method t o  the  so lu t ion  of d i f -  

f e r e n t i a l  equations with asymptotic boundary conditions,  a method was developed 

t o  eliminate the problem of when t o  s top  t h e  in tegra t ion .  

so lu t ion  i s  capable of s a t i s fy ing  the  boundary conditions a t  the  edge of t he  

boundary layer correct ly;  t h a t  i s ,  the  boundary values are approached asymp- 

t o t i c a l l y .  

This method of 

This i s  accamplished by choosing t h e  add i t iona l  i n i t i a l  conditions 
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so tha t  the  mean square e r ro r  between the computed var iab les  and the 

asymptotic values i s  minimized. 

used t o  propose a method of solut ion i n  which the  edge of t he  boundary 

layer  i s  approached i n  steps.  

and convergence appears t o  be insensi t ive t o  the  i n i t i a l  guesses of the  

i n i t i a l  conditions. 

the  unique solut ion even i n  the  case of retarded main stream flows. A 

descr ipt ion of the  method i s  given and two examples taken from boundary-layer 

theory a r e  worked. 

A least-squares convergence c r i t e r i o n  i s  

The convergence r a t e  t o  a solut ion i s  rapid,  

Use of a least-squares convergence c r i t e r i o n  leads t o  

DESCRIPTION OF METHOD 

A descr ipt ion of the  method can best be achieved by r e fe r r ing  t o  a 

de f in i t e  example of a boundary-value problem w i t h  an asymptotic boundary 

condition. 

of an incompressible f l u i d ,  the  following equation a r i s e s  (see r e f .  4) 

I n  Falkner and Skan's treatment of the  l a m i n a r  boundary layer  

f " '  - f f "  + P ( f ' 2  - 1) (1) 

with the  boundary conditions 

q = 0: f = f ' = O  

7 + m i  f '  +a 1 

The primes denote d i f f e ren t i a t ion  w i t h  respec t  t o  

tance from the  w a l l .  The dependent variable f i s  r e l a t ed  t o  the  usual 

stream function. The po ten t i a l  flow i s  given by a power l a w .  The flow 

ve loc i ty  outside the  boundary layer  i n  t he  main stream i s  proportional t o  

t h e  dis tance along the  wall r a i sed  t o  the  power 

main stream flow 

q ,  a measure of the  dis-  

PA2 - p ) .  

P - > 0. 

For retarded 

P < 0, and f o r  nonretarded flow 



6 

I n  practice,  the  asymptotic boundary condition i s  replaced by the 

condition t h a t  f '  = 1 t o  a su f f i c i en t  degree of accuracy a t  q = rledge, 

where Tedge i s  the value of t he  independent var iable  a t  t he  edge of the 

boundary layer. 

of f inding a value of 

The boundary-value problem i s  equivalent t o  the  problem 

f " ( 0 )  fo r  which the  boundary condition a t  the  edge 

of the  boundary layer  i s  sa t i s f i ed ;  

solut ion of the  nonlinear e quat ion 

f '  
edge 

that  i s ,  it i s  desired t o  f ind  a 

Cf"(o)] = 1 

at  q = Tedge, where fkdge - - f ' ( q e d g e ) .  The function f;dge 

i n  t h i s  problem i s  not i n  general e x p l i c i t ,  it w i l l  be expressed as a 

function of f " ( 0 )  through an in tegra t ion  of equation (1). With the  

notation x 3 f " ( O ) ,  observe t h a t  a s m a l l  change Ax i n  x changes f 

by the  amount 

a f t  a=& X 

so  t h a t  t h e  necessary correct ion t o  a first approximation comes from t h e  

solut ion of the l i nea r  equation 

a f t  Ax 

ax l = f ' + -  

at = Tedge' 

The solution of the  equation f o r  Ax can be performed provided the  

p a r t i a l  derivative of f '  with respect t o  x can be evaluated a t  Tedge. 

The p a r t i a l  derivative can be evaluated by forming t h e  per turbat ion equation 

f o r  the  function f I .  

i n  equation (1) appropriately.  

This equation i s  obtained by d i f f e r e n t i a t i n g  the  terms 

With the  notation 
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The following perturbation equation i s  obtained 

f " ' =  - (ff; + f'lf,) + 2pf ' f ;  

q = 0: fx  = f; = o ,  f; = 1 

X 

with the  i n i t i a l  conditions 

Given an i n i t i a l  estimate of x = f " ( O ) ,  the  subsequent values of x 

a r e  computed autamatically i n  the  i t e r a t ion  procedure described previously. 

The problem of where t o  s top  the  integrat ion remains; t h a t  is, Tedge 

i s  unknown. 

boundary condition f '  = 1 i s  applied a t  a f i n i t e  value of 7. 

Figure l ( a )  i l l u s t r a t e s  the d i f f i c u l t i e s  t h a t  arise when the 

The data f o r  f igure  l ( a )  were obtained from calculat ions that a r e  

described i n  d e t a i l  subsequently. 

r e s u l t s  presented i n  this  f igure ,  t he  reader should know t h a t  equation (1) 

was in tegra ted  for spec i f ied  values of f " ( 0 )  with P = 1. The in tegra t ion  

was  stopped at q = 5. Tentative values of Tedge w i l l  here inaf te r  be 

re fer red  t o  as qstop. 

For t he  purpose of understanding the  

Figure l ( a )  shows f '  and f as a function of x = f " ( 0 )  at 

vs top  = 5. 

the condition f' = 1 

x = 1.23. 

two values of x. The proper value of x can be determined by observing 

where f "  = 0. Fram f igu re  l ( a )  it can be seen t h a t  the  correct  value of 

x i s  approximately 1.23.,, It can be concluded from t h i s  i l l u s t r a t i o n  that 

the  s a t i s f a c t i o n  of t h e  boundary condition f '  = 1 at qstop = 5 does not 

ensure the  s a t i s f a c t i o n  of t he  asymptotic boundary condition on f ' ,  namely 

It can be seen t h a t  there a r e  two values of x t h a t  s a t i s f y  

when qstop is taken t o  be 5, namely x = 0.85 and 

Figures l ( b )  and ( c )  show the  two solut ions corresponding t o  the 
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t h a t  the  value of f '  approaches the  value 1 asymptotically. I n  order t o  

s a t i s f y  the asymptotic condition at  a f i n i t e  value of 

f '  = 1 and f "  = 0 should both be imposed (examination of t he  d i f f e r e n t i a l  

equation (1) w i l l  reveal  t h a t  a l l  higher der ivat ives  w i l l  be zero a l s o ) ;  

t h a t  i s ,  Ax should be chosen so  t h a t  both equations 

7 ,  the  condition 

1 = f '  + f& Llx 

0 = f "  + f; Ax 

( 3 )  

(4 )  

a re  sa t i s f i ed  a t  

two conditions and o n l y  one adjustable parameter, Llx. 

solut ion that  i s  consistent with the  idea t h a t  the  boundary condition cannot be 

satisfied exactly a t  a f i n i t e  value of 

of the  preceding equations ( r e f .  5 ) ;  t h a t  is  

7 = vstop. This i s  i n  general impossible since there  a re  

However, a sa t i s f ac to ry  

7 i s  t o  seek the  least-squares  solut ion 

f; (1 - f ' )  - fl'f; 
A x =  

f ' 2  + f n 2  
X X 

In  this way a l l  t he  information contained i n  equations (3) and ( 4 )  i s  

retained. 

The least-squares solut ion of equations (3) and ( 4 )  attempts t o  minimize 

the sum of the squares of the  e r ro r s  i n  these equations as a funct ion of Ax. 

The value of x t h a t  gives Llx = 0 corresponds t o  the  minimum with respect  t o  

x of the  quantity 

( 6 )  
2 E = (1 - f') + f t t 2  

as can be seen fram equation (5) .  I n  f igu re  2 ,  t h e  quant i ty  E i s  shown 

plot ted as a function of x f o r  various values  of qstop. The data fo r  

figure 2 were a l so  obtained from t he  ca lcu la t ions  described subsequently. 
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For t h i s  example ( P  = 1 and 

solut ion gives a unique solut ion f o r  x. It i s  t h i s  property, that the  

minimp of the 5um of the  squares of the appropriate boundary functions 

corresponds t o  no change i n  the  required i n i t i a l  conditions,  that enables 

s a t i s f a c t i o n  approximately of the  asymptotic boundary condition a t  a f i n i t e  

value of the  independent var iable .  The edge of t he  boundary layer  could 

be defined as t h a t  value of q f o r  which the  minimum E i s  l e s s  than same 

preassigned small value as the  range of in tegra t ion  i s  increased. 

a value of qedge. 

qstop = 5) it i s  seen that the  least-squares  

This gives 

The concept of convergence i n  the least-squares sense permits modification 

of t he  in i t ia l -va lue  method i n  order t o  solve a wide c l a s s  of boundary-layer 

problems. To understand why the  i n i t i a l  value method requires  modification, 

consider how t he  method can f a i l  when it i s  applied t o  boundary-layer type 

problems. 

Recall  that i n  the  in i t ia l -va lue  method, correct ions a re  obtained t o  the  

guessed i n i t i a l  conditions a f t e r  integrat ing the  d i f f e r e n t i a l  equations t o  

the  edge of the  boundary layer .  

so poor tha t  the  in tegra t ion  "blows up" ( i . e . ,  diverges beyond a prescribed 

l i m i t )  before reaching the edge of the boundary layer.  

This method can f a i l  i f  the  i n i t i a l  guess i s  

This problem can be avoided and correct ions t o  the  i n i t i a l  conditions 

can be obtained by attempting t o  minimize the mean square e r ro r  between the  

computed solut ion and the  asymptotic values before reaching the  edge of the  

boundary layer .  The modification of t he  in i t i a l -va lue  method cons is t s  then 

of carrying out the  minimizing process a t  any a r b i t r a r y  value of  stop. When 
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t h i s  modified procedure i s  used, the  choice of 

process i s  f i r s t  car r ied  out, may be d ic ta ted  by other considerations than 

where the edge of t he  boundary layer  i s ,  such as keeping the  var iables  

within prescribed l i m i t s  so t h a t  the  so lu t ion  does not diverge. 

minimum has been found and corrections t o  t h e  i n i t i a l  conditions made a t  

the  chosen value of qstop, the  range of in tegra t ion  can be increased if 

ne c e s sar y . 

rlstop, where the  minimizing 

After the  

If the value of t he  minimum found i s  not s m a l l  enough, it w i l l  be 

necessary to  increase the  range of integrat ion.  I n  t h i s  way, the  edge 

of the  boundary layer  i s  approached i n  s teps  by successively increasing 

the  range of in tegra t ion  u n t i l  t he  correct  i n i t i a l  conditions and the  value 

Of Iledge a re  found. 

For t h i s  example, t h e  Falkner-Skan so lu t ion  with p = 1, it appears 

the  quantity E has a de f in i t e  minimum at  each value of 7 including 

q = 0 

w i l l  be described i n  the  next section. 

as can be seen from f igure 2. The numerical so lu t ion  of t h i s  example 

NUMERICAL SOLUTION 

The method described i n  the  previous sec t ion  w a s  programed i n  

F0RTRA.N IVY double precision on the  IN 709411-7040 direct-couple system. 

The boundary-layer and per turbat ion d i f f e r e n t i a l  equations were rewr i t ten  

as systems of f i r s t -o rde r  d i f f e r e n t i a l  equations and integrated with a 

predictor-corrector (Adams-Moulton) subroutine using one correct ion per 

s tep  and a fixed increment. 

The boundary-layer equations along with t h e  per turbat ion equations 

were integrated t o  the  specif ied value of t h e  independent var iable .  The 



11 

correct ions were then determined, 

r e l a t i v e  change i n  the  correct ion 

preassigned value. 

and the process w a s  repeated u n t i l  the  

term equation (5) w a s  l e s s  than a s m a l l  

I 

Extreme accuracy was not required a t  the  smaller values of qstop 

s ince the  boundary conditions cannot be wel l  s a t i s f i e d  there .  

lx10'8 was used a t  the  l a rge r  values of qstop t o  check the r e l a t i v e  

change i n  the correct ion term. This small value seemed reasonable since 

convergence i s  so rapid.  

A value of 

RESULTS OF NOMERICAL SOLUTION FOR EXAMPLE 1 

Figure 3 shows the  solut ion f ' of equation (1) with p = 1 as 

a function of the  independent variable 

f o r  convergence. With an i n i t i a l  guess of 1.0 f o r  

were integrated t o  a value of 

Tstop = 5 three  times. 

values of f '  

r e l a t i v e l y  s m a l l  value of 7 .  If these calculat ions had been car r ied  out 

t o  a la rger  value of 7, the  values of f '  would have a t ta ined  a magnitude 

so la rge  t h a t  any use of these large numbers i n  a Newton-Raphson scheme would 

be meaningless. 

q, f o r  the  first f i v e  tr ials needed 

f " ( O ) ,  the  equations 

qstop = 2 twice and t o  a value of 

Observe tha t ,  f o r  t he  first integrat ion,  the  

tend t o  deviate rad ica l ly  from the  correct  solut ion at a 

The e f f ec t  of qstop on the  convergence process i s  i l l u s t r a t e d  i n  

f igu res  2 and 4. 

f " ( 0 )  f o r  d i f f e ren t  values of 

mall value fo r  

guesses i s  increased, t h a t  i s ,  i n i t i a l  guesses that y ie ld  a r e l a t i v e l y  small 

e r r o r .  For extremely large values of qStop t he  parabola-like curves i n  

Figure 2 shows the error, equation (6), as a function of 

qstop. Observe t h a t  by i n i t i a l l y  using a 

qStop (qstop = 2 i n  f i g .  2 )  t he  range of meaningful i n i t i a l  
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f igure  2 degenerate t o  a v e r t i c a l  l i n e ,  and the  i n i t i a l  guess i s  l imited t o  

the  correct answer. 

Figure 4 shows the  e f f e c t  of vstop on t h e  convergence r a t e .  The value 

of 

f o r  d i f fe ren t  values of qstop. 

t he  s t ra ight  l i n e  shown i n  the  f igure  i s  a measure of t he  r a t e  of convergence. 

If a point remains on t h i s  l i n e  after t w o  t r ia l s ,  there  i s  no tendency toward 

convergence a t  a l l .  It can be seen fram f igu re  4 t h a t  the  points  on the  

curve f o r  v s t o p  = 2 

on the  curve f o r  This indicates  t h a t  t he  r a t e  of convergence i s  

much greater  f o r  Tstop = 2 than  fo r  Tstop = 5 f o r  a l l  i n i t i a l  guesses of 

f " (0 )  a f t e r  two t r ia ls  i s  p lo t ted  against  t he  i n i t i a l  guess of f " ( 0 )  

The distance of a point  on these curves from 

a r e  always f a r the r  from the  s t r a i g h t  l i n e  than the  points  

qstop = 5. 

f ' I (  0) .  

To give an idea of the  r a t e  of convergence t o  a so lu t ion  f o r  t h i s  example 

using an i n i t i a l  guess of f " ( 0 )  = 1, t a b l e  I(a) i s  presented. Using quasi- 

l inear iza t ion  and f i v e  correct ions Radbi l l  ( r e f .  2) obtains  a value of f " ( 0 )  

accurate t o  one decimal place campared with Yohner and Hansen ( r e f .  6 ) ,  whereas 

the  method developed herein reached an answer a f t e r  two correct ions that agrees 

with t h a t  of Yohner and Hanson t o  two decimal places.  

t he  value of f " ( 0 )  agrees with t h a t  of Yohner and Hansen ( r e f .  6 )  t o  within 

2 u n i t s  i n  the seventh decimal place. The last  in t eg ra t ion  w a s  performed as a 

stopping c r i t e r i a  f o r  t he  camputer. 

After two more correct ions,  

Computer time f o r  t h e  complete solut ion,  using a s t e p  s i z e  of 2-4 w a s  

approximately 0.05 minute. 

This example was a l s o  programed by s ingle  prec is ion  with good r e s u l t s .  

The d i f f i c u l t y  i n  using s ingle  precis ion presented itself i n  t h e  form of reducing 
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the range of i n i t i a l  guesses tha t  could successfully be used t o  obtain t h e  

correct  answer. 

Equation (1) w a s  a l so  integrated f o r  t he  case of a retarded main stream 

flow w i t h  p =  -0.1. However, no addi t ional  conditions had t o  be imposed 

such as those used by Hartree ( r e f .  4) i n  order t o  obtain the unique solu- 

t ion .  

square e r ro r ,  agreed w i t h  the  value obtained by Smith (ref. 7 )  f o r  t h i s  

case t o  s i x  decimal places. 

The value of f"(O), which was obtained by minimising-the mean 

EXTENSION TO SYSTEMS OF EQUATIONS 

The l e a s t  squares modification of the in i t ia l -va lue  method described 

previously f o r  a d i f f e r e n t i a l  equation w i t h  a s ingle  dependent var iable  can 

e a s i l y  be generalized t o  systems of equations. A s  an example of a problem 

with two dependent var iables ,  consider t h e  boundary value problem f o r  t h e  

free-convection flow about a v e r t i c a l  p la te .  

reference 8. It cons is t s  of solving the d i f f e r e n t i a l  equations 

This example i s  taken from 

f " ' =  3ff" + 2 f t 2  - h (7) 

h" = - 3Prfh' ( 8 )  

w i t h  t h e  boundgry conditions 

7 = 0: f = f '  = 0, h = 1 

f '  + 0, h +  0 T) + 03: 

Again the  primes denote d i f fe ren t ia t ion  with respect t o  7 (a measure 

of the distance from the w a l l ) ,  and the dependent var iable  is  r e l a t ed  

t o  t h e  usual stream function. The dependent var iable  h i s  proportional 

t o  the temperature excess of the f lu id  over t he  ambient temperature, and 

Pr denotes the  Prandl number. 

f 
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Since there  a re  two asymptotic boundary conditions t o  s a t i s f y ,  two 

addi t ional  i n i t i a l  conditions a t  the  w a l l  w i l l  have t o  be adjusted; t h a t  

i s ,  values of x = f" (0)  and y h ' ( 0 )  a r e  sought t h a t  w i l l  s a t i s f y  

simultaneously the  nonlinear equations 

a t  -q = qedge, where f '  = f ' ( 7  ) and h = 
edge edge edge 

necessary f i r s t  correct ions t o  a f i rs t  approximation x and y come from 

a solut ion of the  l i nea r  equations 

0 = f '  + f p x  + f '  @y 
Y 

0 = h + h, Ax + hy Ay 

- a f l  

ax a Y  
a t  7 = qedge. m e r e  f i  = afl , f;' - -, e tc .  However, i n  order t o  

s a t i s f y  the  asymptotic boundary conditions,  t h e  preceding equation must be 

supplemented by 

0 = f "  + f; & + f "  Ay 
Y 

0 = h '  + h i &  + h $ Q  

and Ax and Ay must be found such t h a t  t he  sum of squares of t he  e r r o r s  

i n  the  preceding four equations be a minimum. The least-squares  so lu t ion  

fo r  those quant i t ies  i s  given by the  so lu t ion  of t h e  following matrix equation: 

f ' 2  + h2 + f l 2  + hi2,  

12 + h2 + f " 2  + h.12 
Y Y  Y 

X X 

f ' f '  + h h t f " f "  + h ' h '  x y  X Y  X Y  X Y '  - 

The values of x and y t h a t  give Ax = &'i.k 0 correspond t o  the  
P 

minimum with respect t o  x and y of t he  quant i ty  

( 9 )  
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(10) E = f ' 2  + h2 + f f f 2  + h f 2  

"he partial der ivat ives  with respect t o  x and y that appear i n  

the equation (9 )  a r e  obtained by integrat ing the appropriate per turbat ion 

d i f f e r e n t i a l  equations. The perturbation d i f f e r e n t i a l  equations f o r  the  

x der ivat ives  a re  

f" '  X = - 3(f X f "  + f f" )  X + 4f ' f i  - hx (11) 

and 
h i  = - 3 FY(fxh' + fhi)  

with t h e  i n i t i a l  conditions 

"he per turbat ion d i f f e r e n t i a l  equations f o r  the y der ivat ives  a r e  

hy f = - 3(fyf" + f f " )  + 4f 'f;' - 
Y Y 

h; = - 3Pr(fyh' + fhi) 

with the  i n i t i a l  conditions 

7 = 0 :  f y  = f;' = f f  = hy = 0; h '  = 1 
Y 

Note that the  equations f o r  the y der ivat ives  a r e  the  saae as the  

equations f o r  the  x derivatives.  The in t eg ra l s  of these equations w i l l  

d i f f e r  since the i n i t i a l  conditions a r e  d i f fe ren t .  

Note a l s o  that  there  a re  as many addi t iona l  systems of per turbat ion 

equations t o  in tegra te  as there  are asymptotic boundary conditions t o  meet. 

NUMERICAL SOLUTION OF EXAMPLE 2 AND FWULTS 

The same general procedure used i n  the previous example was employed 

t o  solve t h i s  example. 

needed a t  the  l a rge r  value of 

f irst  example. 

One notable difference i s  that f i v e  tr ials were 

q,topy r a the r  than the  three  tr ials of the 

This i s  probably because of t he  need of ad jus t ing  two i n i t i a l  
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conditions r a the r  than one, and because an e r ro r  i n  one i n i t i a l  condition 

leads t o  an error i n  computing the  correct ion term of the  other. 

The solutions of equations ( 7 )  and (8) a re  shown i n  f igure  5 f o r  

El- = 0.733. Note (as i n  the  previous example) t h a t  t he  functions f '  and 

h 

guesses of t r i a l  1. 

Table l ( b )  shows the  rapid r a t e  of convergence f o r  t h i s  more d i f f i c u l t  

of f igure 5 diverge r ad ica l ly  from the  t r u e  solutions,  f o r  t he  i n i t i a l  

example. 

respectively,  convergence i s  rea l ized  after two tr ials with 

f i v e  t r i a l s  with 

published values of Ostrach ( r e f .  8) .  

With i n i t i a l  guesses of 1.0 and - 1.0 f o r  f " ( 0 )  and h ' ( O ) ,  

qstop = 2 and 

qstop = 8. The r e s u l t s  a re  i n  close agreement with the  

The ef fec t  of qstop on the  convergence process f o r  t h i s  example 

i s  i l l u s t r a t ed  i n  f igures  6(a)  and (b ) .  Level curves f o r  the  e r ro r ,  equa- 

t i o n  (lo), are p lo t ted  i n  the  f " ( 0 )  plane for qstop = 2 i n  f igure  6 (a )  

and for  ' lstop = 5 i n  f igure  6(b) .  A s  i n  t he  previous example, by using 

a s m a l l  value f o r  

r e l a t i v e l y  small e r ro r  i s  again increased; t h a t  is, t h e  a rea  where 

l e s s  than 1 i s  much greater  i n  f igure  6 ( a )  than  i n  f igure  6(b) .  

extremely l a r g e  values of 

where E 

t o  the  correct  answer. 

t he  range of i n i t i a l  guesses t h a t  y ie lds  a %top' 

E i s  

For 

qstop, t he  a rea  enclosed by the  l e v e l  curve 

i s  l e s s  than 1 shrinks t o  a point ,  and t h e  i n i t i a l  guess i s  l imited 

Computer t i m e  fo r  t he  second example was about 0.15 minutes with a 

s t ep  s ize  of 2-4. In  both examples, t he  convergence was  made insens i t ive  

t o  the  i n i t i a l  guesses by choosing a small value of f o r  the  f i r s t  

two tr ials.  The answer thus obtained f o r  the  i n i t i a l  conditions was good 
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enough t o  s tep  qStop up considerably. The e r ror  term may be made as 

small as desirable by continuous stepping of 

a l so  be used as a stopping c r i t e r i a  f o r  camputer calculations and findings 

qstop. This e r ro r  term may 

sledge automatically. 

CONCLUSIONS 

The two main problems of integrating the  boundary-layer equations, approx- 

imating the missing i n i t i a l  conditions, and finding 

t o  an autamatic in i t ia l -va lue  technique that i s  eas i ly  programed on high-speed 

computers. 

verges quickly t o  the solution. 

qedge, have been reduced 

The .method appears t o  be insensit ive t o  i n i t i a l  guesses and con- 
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Correction 

1 
2 
3 
4 
5 

TABU I. - CONVERGENCE HISTORY OF 

qsto f I t (  0 )  

2.0 1.0 
2.0 1.2463981 
5.0 1.2266764 
5.0 1.2326729 
5.0 1.2325878 

1.2325878 

INITIAL VALUES 

Radbill ( r e f .  2) 
Yohner and Hansen 

( re f .  6) 

5.0 1.2397 

4.0 1.2325876 

Published values 

f I t (  0 )  %top Source I 
~ 

(b )  Example 2 

2.0 
2.0 
8.0 
8,O 
8.0 
8.0 
8.0 

1.0 -1.0 
,61735605 -.59008297 
-63211384 -.57655550 
.66795925 -. 52593128 
67387305 -. 50916398 
67412049 -. 50790411 

.67412438 - .50789273 
-67412438 -.50789273 

Published values 
I I I I 

I I 



. 4  . 8  1.2 1. 6 
f '(0) 

1.6 

.a 

0 

(a) f'(0) at - 5. (c) Solution for f"(0) - 0.85. 

Figure 1. -Variation of f and f'. 
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Distance from wall, 9 

Figure 3. - Convergence history of solution of equation (1) 
for B = 1. 

f"(0) (initial guess) 

Figure 4 - Effect of qstOp on convergence rate. 
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Figure 5. - Convergence history of solutions of equations (7) and (8) for Pr = 0.733. 

P ' (0) 
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P'(0) 

(a) 7stop = 2 
Figure 6 - Level curves of error as function of f'(0) and h'(0). 

(b) "top 5. 
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